
Abstract. Following an approach to density functional
theory calculations based on the matrix representation
of operators, we implemented a scheme as an alternative
to traditional grid-based methods. These techniques
allow integrals over exchange-correlation operators to
be evaluated through matrix manipulations. Both local
and gradient-corrected functionals can be treated in a
similar way. After deriving all the required expressions,
selected examples with various functionals are given.
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1 Introduction

Computer simulations based on density functional
theory (DFT) [1] provide a powerful tool for calculating
the physical and chemical properties of complex mole-
cules and solids. The main reason is that the results of
these calculations compare favourably with traditional
quantum chemical methods, but with less computational
e�ort. To overcome the problem of the unknown
exchange-correlation (XC) functional, most applications
make use of the local density approximation (LDA).
Aiming at a more accurate description of XC e�ects, a
variety of additional gradient corrections (GC) have
been proposed [2±4]. Since all these methods involve
integration over complicated algebraic expressions, it
seems inevitable to have to work with numerical
quadrature over a grid.

An alternative to these traditional grid-based meth-
ods was recently proposed by Zheng and AlmloÈ f [5, 6],
who use matrix techniques to calculate the required in-
tegrals analytically. The suggested approach is based on
a matrix representation of the density in an auxiliary
basis set. Within this representation, matrix elements of
XC functionals of the density are obtained by simply
calculating matrix functions. The additional use of basis

set completeness relations and the spectral resolution of
the identity operator allows analytical expressions for
the XC energy and potential to be derived. The method
is not limited to local XC functionals. Gradient-cor-
rected functionals can be treated in a similar way, using
a matrix representation of the absolute value of the
gradient.

It is important to stress that such an analytical ap-
proach is not only desirable from an aesthetic point of
view, it also avoids the noise resulting from numerical
quadrature. Clearly, the use of a ®nite basis set intro-
duces a new source of inaccuracy but the error due to
basis set incompleteness is smooth, independent of the
choice of coordinate system and can be eliminated in a
controlled way by increasing the basis set.

The aim of this letter is to derive all the expressions
required to implement this grid-free method and address
a number of apparent numerical problems. Test calcu-
lations with di�erent XC functionals show that, in the
case of LDA, this technique provides an excellent
alternative to grid-based methods. Working with gradi-
ent-corrected functionals is more di�cult; however it is
evident that this approach is feasible too. Unfortunately,
large basis sets are needed to handle the apparent
problems.

2 Methods

The starting point for the grid-free method is a matrix represen-
tation of the density q�r�. The density is de®ned in terms of inde-
pendent Kohn-Sham orbitals

q�r� �
X

i

nijWi�r�j2 ; �1�

where ni are the occupation numbers. If we expand the one-electron
orbitals in a basis set (Latin letters) and use an auxiliary basis to
calculate the matrix representation of the density (Greek letters) we
obtain

Mab�q� � hajqjbi �
X

i;j

Pij�ijab� : �2�

Pij is an element of the reduced, ®rst-order density matrix, and
�ijab� is a generalized one-electron overlap integral. Other repre-
sentations of the density (e.g. in auxiliary basis set methods) require
a straightforward change of Eq. (2).Correspondence to: M. Parrinello
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The next step is to write the XC energy in a general way

Exc �
Z

q�r��xc�q; �jrqj��dr ; �3�

where �xc is a function of the electron density, and possibly also of
the absolute value of the gradient.

To derive the required expressions for the XC energy and po-
tential it is convenient to ®rst consider the local part.

2.1 Local density approximation

Since �xc is now merely a function of the electron density, it is easy
to calculate the XC energy by using the following steps:

1. Calculate the matrix representation of the density using Eq. (2).
2. Transform to an orthonormal basis

~M �q� � XM �q�X ; �4�
where the transformation matrix X is calculated easily from the
overlap matrix Sab � �ab�: X � Sÿ

1
2. Since we are working with real

basis functions, the transformation matrix is symmetric, which
means that all equations are simpli®ed using X � X T .
3. Calculate the matrix function by diagonalizing the matrix and
evaluate the function of the eigenvalues

�xc� ~M �q�� � Ydiag �xc�k1�; . . . ; �xc�kn�� �Y T ; �5�
where Y is the unitary transformation that diagonalizes ~M �q�.
4. Calculate the energy

Exc�q� � Tr P ŜX �xc� ~M �q��X ŜT� �
; �6�

where Tr denotes the trace of the matrix. Ŝia � �ia� is the overlap
matrix between the basis set used to expand the electron orbitals
and that used to calculate the matrix representation of the density.

In order to perform a DFT calculation we also need an ex-
pression for the XC potential, which is de®ned as the functional
derivative of the energy: V � dE

dq. The corresponding equation in
matrix form is

hijV jji � @E
@Pij
� ŜX �xc� ~M �q��X ŜTÿ �

ij �7�

� Tr P ŜX
@�xc� ~M �q��

@Pij
X ŜT

� �
:

The ®rst part of Eq. (7) is straightforward to calculate, but the
second part must be handled with care. The reason is that a deri-
vation of the function which involves a diagonalization of ~M �q� is
not possible because the unitary transformation Y itself depends on
P . However, we can express the matrix function in an alternative
way using a line integral which includes all eigenvalues of matrix
~M �q� [7]:
@�xc� ~M �q��

@Pij
�8�

� 1

2pi
@

@Pij

I
�xc�z��z1ÿ ~M �q��ÿ1dz

� 1

2pi

I
�xc�z��z1ÿ ~M �q��ÿ1 @

~M �q�
@Pij

�z1ÿ ~M �q��ÿ1dz

� Y
1

2pi

I
�xc�z�

 
z1ÿ diag�k1; . . . ; kn�

!ÿ1

� Y T @ ~M �q�
@Pij

Y

 
z1ÿ diag�k1; . . . ; kn�

!ÿ1
dzY T :

1 denotes the identity matrix. Carrying out the integration over z
one obtains

1

2pi

I
�xc�z�

�zÿ ki��zÿ kj� dz

�
lxc�ki�; ki � kj ,

�xc�ki�ÿ�xc�kj�
kiÿkj

; ki 6� kj ,

(
�9�

where lxc denotes the derivative of �xc with respect to q. Performing
some trivial algebraic transformations, the second part of Eq. (7)
becomes

Tr P ŜX
@�xc� ~M �q��

@Pij
X ŜT

� �
� Tr Y fA;BgY T @ ~M �q�

@Pij

� �
; �10�

where the matrix Bij is de®ned through Eq. (9), fA;Bg denotes a
componentwise matrix multiplication and

A � �ŜXY �T P�ŜXY �; @ ~M �q�
@Pij

� X
ÿ�abij��X : �11�

For the special case when the auxiliary basis coincides with the
original basis the formulas can be simpli®ed by using
ŜX � Xÿ1 � S

1
k.

2.2 Gradient corrections

The approach outlined earlier must be slightly modi®ed for gradi-
ent-corrected functionals. Firstly all the non-local XC functionals
that we have considered allow us to rewrite Eq. (3) using a function
f depending solely on q and another function g depending only on
a variable s

Exc�q� �
Z

q�r�f �q�g�s�dr; s � jrqj
q
4
3

: �12�

This equation reads in matrix form

Exc�q� � Tr P ŜXf � ~M �q��g� ~M �s��X ŜT� �
: �13�

However, what is needed is a scheme to calculate ~M �s�. Such a
scheme has already been proposed by Zheng and AlmloÈ f [6]. Here
we obtain a matrix representation of the x-component of the gra-
dient through

~M ��rq�x� � ~M ��r�x� ~M �q� ÿ ~M �q� ~M ��r�x� ; �14�
where the tilde denotes that we are already using an orthonormal
basis set. With analogous equations for all components we derive
®rst an expression for the absolute value of the gradient

~M �jrqj� �
���������������������������������������������������������������������������
~M ��rq�x�2 � ~M ��rq�y �2 � ~M ��rq�z�2

q
; �15�

and ®nally for the matrix representation of s

~M �s� � ~M �jrqj�� ~M �q��ÿ4
3 : �16�

It is worth noting that working with Eq. (16) causes some prob-
lems. Firstly, jrqj and q interpreted as operators should commute
because they are multiplicative. However, when we use a ®nite basis
set this property is no longer true. To overcome this de®ciency, we
replace Eq. (16) by the corresponding anticommutator relation.
Secondly, a product of two positive de®nite matrices is not neces-
sarily positive de®nite. This means that when we diagonalize the
matrix representation of s to calculate a matrix function, we cannot
expect to obtain merely positive eigenvalues. Unfortunately, as
discussed in the next section, the use of large basis sets appears
inevitable to handle this problem.

Now to calculate the potential we get an expression resembling
Eq. (7) but with a third part including the derivative @g� ~M �s��

@Pij
. In

agreement with Eqs. (8±10) we compute this third part through
repeated use of the chain rule according to the Eqs. (14±16) until we

obtain nothing but terms containing the derivative @
~M �q�
@Pij

. Adding up

all terms allows the straightforward calculation of the potential in a
recursive way.

It is important to notice that all derived equations are exact in
the limit of a complete basis set. In a practical implementation,
however, we have to use a ®nite basis set and the e�ect of this
restriction is discussed in the next section.
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3 Examples and discussion

The matrix approach has been implemented in a hybrid
Gaussian and plane wave (PW) density functional
scheme [8]. As in traditional PW schemes, pseudopoten-
tials are used to eliminate the core electrons from the
calculation. In addition, following an approach by
BloÈ chl [9] we subdivide the electronic charge in atomic
contributions and a smooth interstitial part. The XC
energy is then also divided as Exc � �Exc � E1

xc ÿ �E1
xc, into

a smooth part �Exc, which is evaluated on a regular grid
using PWs, and two one-center contributions E1

xc and
�E1

xc
which are evaluated according to the grid-free approach.
The corresponding one-center densities are expanded, in
agreement with Eq. (2), in an uncontracted Gaussian-
type orbital (GTO) basis set. Experience shows that in
the case of LDA this basis can be used to calculate all
matrix representations. When handling the gradient-
corrected functionals, however, one must use enlarged
auxiliary basis sets. All calculations in Table 1 were done
using 5 uncontracted s and p and 2 d GTO functions.
The auxiliary basis consists of 7s, 7p, 4d, and 2f
functions. The grid-based numerical calculations were
performed using a product grid consisting of 40 radial
points and an angular part with 50 points chosen
according to the Lebedev method [10].

A comparison of the results obtained from our grid-
free approach and the results obtained from a grid-based

numerical integration is shown in Table 1. All calcula-
tions were done at ®xed geometry and all energies are
calculated from self-consistent densities. The XC func-
tionals considered are a pure LDA functional in a Pade
approximation [11], an exchange functional by Becke (B)
[2], a correlation functional by Lee, Yang and Parr
(LYP) [3] and a correlation functional by Perdew (P) [4].
It is evident that the results involving gradient-corrected
functionals are less satisfactory than for the LDA case.
Although the accuracy achieved is su�cient for practical
purposes, we cannot completely reproduce, even with a
large basis set, the results of the numerical integration.

How can such a discrepancy be explained? Firstly, it
appears that the gradient of the density calculated via
Eq. (14) is not well represented by small basis sets. The
next point is that the calculation of the matrix repre-
sentation of s (Eq. 16) involves a matrix representation
of qÿ

4
3. This expression becomes unbounded for small

densities and we have no appropriate representation in
this region. A further problem is that when we diago-
nalize the matrix representation of the variable s (Eq. 16)
in order to calculate a matrix function, using small basis
sets, we obtain negative eigenvalues which are not
physically meaningful. This is because a product of two
positive de®nite matrices is not necessarily positive def-
inite. However in our experience, with the enlarged basis
sets introduced above, the appearance of negative ei-
genvalues is avoided and all operators are reasonably
represented.

Thus it appears that the matrix approach is feasible
for local as well as for gradient-corrected functionals.
There is, however, a quantitative di�erence. In the case
of LDA, we can use the original GTO basis set and the
overall performance of the operator approach compares
favourably with numerical integration. Unfortunately,
the use of large basis sets appears inevitable for gradient
corrected functionals, which questions the usefulness of
such an implementation.
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Table 1. Comparision of total and exchange-correlation (XC)
energies of various molecules ([EH ]) obtained from the grid-free
approach (anal.) and the numerical quadrature over a grid (num.)
respectively. The XC functionals considered are a pure local density
approximation (LDA) functional, an exchange functional by Becke
(B), a correlation functional by Lee, Yang and Parr (LYP) and a
correlation functional by Perdew (P)

Mol. Exc num. Exc anal. Etot num. Etot anal.

LDA
H2 )0.668071 )0.668074 )1.124706 )1.124711
N2 )4.778431 )4.778482 )19.862484 )19.862524
O2 )6.635701 )6.635793 )31.714852 )31.714893
H2O )4.135950 )4.136020 )17.105997 )17.106040
CO )4.952923 )4.952980 )21.579077 )21.579126
CH4 )3.079560 )3.079605 )8.025097 )8.025123

B + LYP
H2 )0.708794 )0.710745 )1.156783 )1.157736
N2 )4.870245 )4.873711 )19.932737 )19.936092
O2 )6.797641 )6.788523 )31.840368 )31.839543
H2O )4.236357 )4.234576 )17.185954 )17.187160
CO )5.059707 )5.057543 )21.659556 )21.660719
CH4 )3.150381 )3.154271 )8.073818 )8.077146

B + P
H2 )0.716652 )0.718191 )1.166161 ) 1.167016
N2 )4.951349 )4.960175 )20.010477 )20.020438
O2 )6.881504 )6.887382 )31.925471 )31.931385
H2O )4.294198 )4.298948 )17.243376 )17.246888
CO )5.136621 )5.138950 )21.734175 )21.736345
CH4 )3.209921 )3.215686 )8.133744 )8.138768
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